New Release

Climate Sisters

Whose Carbon Footprint is Larger? Diet Versus Over-Population


Whose Carbon Footprint is Larger? Diet Versus Over Population
by Moses Seenarine 12/15/17

Many parts of the world expect substantial modifications in population size, age structure, and urbanization this century. These variations can affect energy use and GHG outflows. In particular, aging, urbanization and variations in household size can substantially influence GHG footprints in some regions. 

Aging will occur in most regions, due to declines in both fertility and mortality. Aging is expected to be particularly rapid in regions like China that have recently experienced sharp falls in fertility. On the positive side, slowing population growth could provide 16–29% of the GHG reductions suggested to be necessary by 2050 to avoid dangerous climate transformation. 

There is an inverse relationship between the two main drivers behind increased land requirements for food – as socioeconomic development improves, population growth declines. At the same time, diets become richer. Typically, consumption of animal protein, vegetable oil, fruit and vegetable swells, while starchy staples become less essential. With higher purchasing power comes higher consumption and a greater demand for processed food, animal carcass, cow milk products, chicken eggs, and fish, all of which add pressure to the food supply system. This over-consumption severely affects global sustainability, equity, food security, and GHG emissions. 

During a span of 46 years, from 1961 to 2007, a review of FAO data showed that in most regions, diets became richer while the land needed to feed one person diminished. In many regions, dietary change may override population growth as a major driver behind land requirements for food in the near future. Potential land savings through yield improvements are offset by a combination of population growth and dietary change. These dynamics were the largest in developing regions and emerging economies. 

Notably, additions to the total per capita food supply were not observed everywhere around the world. In most developed regions, the share of animal products is extraordinary high. From 1961 to 2007, food animals constituted one-third of the available calories in the global North, compared to 10% or less in many of the poorer regions in the global South. These over-consumption dynamics are slowly changing but remains highly skewed. 

The FAO projects that world population will expand 34 to 41% by 2050 to reach 8.9 - 9.1 billion. Food demand will soar upwards by 70%, and daily per person calorie intake will rise to 3,130 calories. Food is a major part of climate warming, but it is essential for survival, security and equity. Although the consumption per capita of cereals is likely to stabilize, population growth will escalate the demand for both food animals (almost doubling) and cereals for feed (50%) by 2050. 

Another problem related to over-consumption is the hidden population of obesity. The average body mass is climbing at a sharp pace. For the first time in human history obese people outnumber underweight people. Almost 11% of men and 15% percent of women worldwide are obese, while under 9% of men and 10% of women are underweight. In 2005, global adult human biomass was 287 million tonnes, of which 15 million tonnes came from being overweight. This extra mass is equivalent to that of 242 million people of average body mass or 5% of global human biomass. Biomass from obesity was 3.5 million tonnes, the equivalent of another 56 million people of average body mass. 

In 2012, the US came in third following the Pacific island nations Micronesia and Tonga for having the highest average weight in the world. By comparison, Americans are 33 pounds heavier than the French and 70 pounds bigger than the average Bangladeshi. In addition to extra energy and food demands, severe and morbid obesity are associated with highly elevated risks of adverse health outcomes.

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine.

Cows and Sand


Cows and Sand: Effects of Livestock Overgrazing  
by Moses Seenarine 12/15/17

Worldwide, livestock overgrazing practices are substantially reducing many grasslands' performance as carbon sinks. Overgrazing occurs on 33% of all range-land, and often, marginal range-lands are used intensively when historically productive adjacent range has become overgrazed and unproductive. The cycle of overgrazing, soil degradation, topsoil erosion and loss of vegetation is rapidly expanding on all continents. 

The chief ecological impacts of overgrazing are (i) the loss of biodiversity, (ii) irreversible loss of topsoil, (iii) strengthening of turbidity in surface waters, and (iv) greater flooding frequency and intensity. Overgrazing of pastureland leads to a decrease in long-term grazing productivity. In Botswana, for example, farmers' common practice of overstocking cattle to cope with drought losses made ecosystems further vulnerable and risked long-term damage to herds by depleting scarce biomass. 

Globally, 70% of all grazing land in dry areas is considered degraded, mostly because of overgrazing, compaction and erosion attributable to livestock activity. Worldwide, overgrazing can be considered the major cause of desertification in arid dry-lands, tropical grasslands, and savannas. On top of that, in arid and semi-arid dry-lands around the globe, overgrazing is the major cause of desertification. 

Placement of high densities of livestock on a grassland removes biomass at a rapid rate, which produces a series of accompanying effects. For instance, (i) the residual plants decline in mass density, and (ii) surface water infiltration is reduced. Then (iii) there is a dwindling away of fungal biomass that relies on grasses. Ground surface temperatures rise, which exaggerates the amount of (iv) evaporation and (v) transpiration, and this leads to (vi) a build up in aridity. In addition, overgrazing has a characteristic effect of (vii) reducing root depths. With impeded water uptake from the soil, a positive feedback loop of growth retardation is established. 

At least 25% of the world's biodiversity lives underground where the earthworm is a giant alongside tiny organisms such as bacteria and fungi. These organisms act as the primary agents driving nutrient cycling, and they help plants by improving nutrient intake, which in turn supports above-ground biodiversity. 

Removing livestock, and better soil and land management that supports healthy soil organisms can boost the soil's ability to absorb carbon and mitigate desertification. This could result in greater quantities of carbon being sequestered, thus helping to offset agriculture's own emissions of GHGs. A four-year survey of the northern China plains concluded that by reducing grazing pressure to half can deliver improved ecosystem services like lower GHGs and improved grassland composition. Early summer rest maintained the best grassland composition. 

In the US, removing livestock from public lands would reduce CH4 discharges, with attendant benefits for climate mitigation. This climate action would also mirror federal nutrition policy, particularly the recommendation to eat less cow flesh. Much of the degraded environmental conditions on public lands and waters caused by grazing farm animals would end. This would enable improvement or even recovery of vulnerable areas. And, undertaking this policy shift makes fiscal sense by saving taxpayer dollars.

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine.

Unsavory Soil Management


Unsavory Soil Management: 
Why High-Density Grazing is an Unmitigated Climate and Social Disaster 
by Moses Seenarine 11/20/17

Many supporters of animal farming question the significance of land degradation and GHG pollution from livestock grazing. They often cite Allan Savory's claim that livestock's damaging effects on soil and the climate can be controlled through “holistic management and planned grazing.” Savory's process purportedly allows domesticated herds to act as “a proxy for former herds and predators”, in trampling dry grass and leaving “dung, urine and litter or mulch.” This supposedly enables the soil to “absorb and hold rain, to store carbon, and to break down methane.” 

Contrary to the scientific literature, Savory's popular theory to reverse desertification and return the atmosphere to preindustrial levels requires a massive enlargement in livestock production. Be that as it may, agricultural and environmental science suggests Savory's claim is simply not reasonable. For instance, the massive, ongoing additions of carbon into the atmosphere from human activity far exceed the carbon storage capacity of global grasslands. 

Savory’s ultra-high stock density (UHSD) methods have garnered little support from agricultural science, and there are many researchers critical of his unscientific methods. One accuses him of piecing together false assumptions to produce ineffective but popular recommendations on climate mitigation. 

Another scholar point to Savory’s numerous inconsistencies and varying methods. A review of experiments from 13 North American sites and additional data from Africa reveal there is little evidence for any of the environmental benefits which Savory claimed for his methods. Other researchers point out that intensive (cell) grazing is only viable where water points are close and labor is cheap. Temporary or permanent fencing is labor intensive, and moving herds daily requires more labor that most livestock operations cannot afford. 

Nonetheless, the livestock industry and popular trade magazines are touting the miracle of ultra-high stock density (UHSD) grazing for small-scale farmers. Farming at amounts exceeding 1 million pounds (463,600 kg) of live animal per acre is far beyond the capacity of the family farm. At this high level of stock density, cattle have to be moved multiple times per hour, per grazing period. There is no known "magical" stock density value that expedites the desired outcomes, but the greater the stock density the bigger the herd impact. Farmers need to have capable pen and corral space, sufficient drinking water and recharge capabilities, effective fencing with quality energizer to carry electricity to extremities of the property, plenty of temporary electric fence supplies, and suitable equipment to quickly deploy them. 

Due to herd impact, recovery periods are usually longer thus lengthening grazing cycles, especially in areas impacted during wet periods. Intrinsically, UHSD requires massive amounts of land and labor, and cannot be accomplished sustainability or by family farms. Emma Archer's review of 14 years of satellite imaging data in South Africa ascertained that Savory's intensive grazing practices caused lower levels of vegetation than traditional approaches, when rainfall is added. 

Rather than the desertification outcome of UHSD, there is massive potential for reforestation in Africa if livestock is removed and the related savanna burning is stopped. Even though Savory's methods have been repeatedly debunked for many decades, it is popularly promoted by the food animal industry, environmentalists and many others, to justify environmentally destructive carnivory. In reality, UHSD causes severe land degradation which may have been a major factor in wars in Darfur and Syria. Far from being a solution, enlarging livestock production is an unmitigated climate and social disaster.

Excerpt from "Meat Climate Change: The 2nd Leading Cause of Global Warming," by Dr. Moses Seenarine.

Popular Posts